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A comparative study is made of the dimensions and periods of large-scale distur- 
bances generated in laboratory and natural vortices. 

Recent studies have focused considerable attention on the specific physical character- 
istics of the hydrodynamics of strongly nonlinear nonuniform vortex flows, in particular 
various kinds of large-scale vortex formations. The dynamics of these natural vortices in 
the category of tropical cyclones, tornadoes, etc., is determined in large measure by the 
way in which the turbulent fluctuations are related to the velocities of the mean motion [I]. 
The principal distinction of these interactions lies in the fact that energy is transferred 
along the spectrum from Small-scale to large-scale components, but not vice versa, as implied 
by the notions of the cascade transfer mechanism [2]. In the present article we use an in- 
direct procedure to analyze the behavior of macroscale turbulent disturbances in a physical 
model of an atmospheric vortex. We determine the specific features of the evolution of a 
turbulence scale corresponding to zero correlation radius in the axial and radial directions 
of the vortex. 

To characterize the structure of the turbulent flows we introduce the integral scale [3] 
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where the integrand represents the correlation function and v is the velocity of the mean 
motion. 

The integral turbulence scale computed with respect to zero correlation radius can be 
identified with the Prandtl mixing length Z [4]. In the case of an axisymmetrical flow twisted 
about the vertical axis the length I is calculated according to the formula [5] 
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We use the following hypothesis. We assume that the components of the turbulent stress ten- 
sor are proportional to the product of the mean velocities of the motion [6, 7]. The propor- 
tionality factor in this case can be the square of the K~rm~n constant ~ [8]: 

lh' v'l = x~ lug (3) 

The characteristic scales I of turbulence in vortices generated under laboratory condi- 
tions have been calculated according to the data of velocity measurements on equipment at 
the A. V. Lykov Institute of Heat and Mass Transfer of the Academy of Sciences of the Belo- 
russian SSR and the M. V. Lomonosov Moscow State University [8, 9]. The vortex generator was 
a bladed-surface swirling unit rotating inside a deflector. The vortices were generated in 
the air between the underlying surface and the swirling unit. We propose to analyze the 
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Fig. I. Radial profiles of the tangential velo- 
city v (m/sec) (curves i) and scale of turbulent 
fluctuations l*, i0 -i (curves 2) in a laboratory 
vortex model for various distances z (m) from the 
lower end of the vortex, a) z = 0.03; b) 0.05; 
c) 0.i; d) 0.13, e) 0.14; f) 0.19. 

measurements carried out in vertical-axis vortices generated with the swirling unit spinning 
at 4000 rpm. The length of the vortices was 0.25 m, the radius of the swirling-unit blades 
was 0.059 m, and the diameter of the deflector was 0.21 m. The velocity vector was measured 
by means of a miniature spherical five-channel probe and Prandtl micromanometers [9] at the 
following distances measured from the lower end of the vortex: 0.03, 0.05, 0.I, 0.13, 0.14, 
0.19 m. It is �9 from Fig. 1 that the profiles v(r) have a second maximum near the 
deflector. It is induced by the anomalous transfer of turbulent momentum in the direction of 
the angular velocity gradient [I0]. To calculate the value of the macroscale of turbulent 
disturbances at various points of the vortex according to Eqs. (2) and (3) we use the relation 

[8] 
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The values of the quantities v m and r m in (4) are chosen for the distance corresponding to the 
depth at which the flow enters the vortex [ii]. In the experiments discussed here the inflow 
depth was 0.i m. The speed of rotation of the vortex core was v m = 8.5 m/sec, and the radius 

of the core was r m = 0.045 m (Fig. ic). 

The fluctuation scale shown in Fig. 1 attains its maximum values at two points with a 
certain shift relative to the maxima of the tangential velocity. The largest turbulent 
disturbances are localized beyond the boundary of the vortex core and in the peripheral region. 
The size of these fluctuations corresponds to the inertial interval of space scales. Convec- 
tion, turbulent diffusion, and energy transfer to smaller-scale components�9 take place through 
such fluctuation disturbances. On closer approach to the swirling unit thecurves v(r) ac- 
quire a second maximum, and a tendency toward growth of the scale of the turbulent distur- 
bances is noted. Close to the swirling unit it attains values commensurate with the outer 
scale of the vortex flow (radius of the swirling unit). In particular, the maximum value of 
the scale normalized to ~r m 1.13 cm, i.e., l* 1/~rm, was equal to l'max = 7.3. The period 

T = 1/v of the large-scale disturbances for the investigated laboratory vortex model attained 

values ~qual to 7.3"i0 -s sec. 
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Fig. 2. Distribution of the turbulence macroscale l* for a 
laboratory vortex model along the vertical z (m) axis at various 
distances r (m) from the center of the vortex, i) r = 0.03; 2) 
0.05; 3) 0.06; 4) 0.07; 5) 0.08; 6) 0.085; 7) 0.i. 

Fig. 3. Comparison of radial profiles of the tangential velocity 
in: i) a laboratory vortex model (our measurements); 2) hurricane 

Frieda [12]. 

The nature of the development of large-scale disturbances along the vertical direction 
can be assessed from Fig. 2. It is seen that large-scale disturbances occur only at certain 
distances from the axis of the vortex in its upper region. The dimensions of the distur- 
bances decrease on approaching the lower end of the vortex. Near the center of rotation and 
at the periphery of the vortex a different behavior is observed on the part of the fluctua- 
tion scales in the vertical direction: The scales of the turbulent disturbances decrease 
systematically with distance from the lower end of the vortex. 

In the case of natural atmospheric vortices (such as tornadoes , tropical cyclones, 
typhoons, etc.) there are no data on the nature of the evolution of large-scale disturbances 
in the axial and radial directions. On the other hand, the existence of two maxima on the 
tangential-velocity profiles v(r) is reported. For comparison, Fig. 3 shows curves of the 
radial variation of the tangential velocity for hurricane Frieda (September 21, 1957) [12] 
and for our investigated laboratory vortex model, in dimensionless form. The rotational 

velocity of the core of the hurricane was Vm = 19 m/sec, and the radius of the core was rm = 
40 km. The corresponding quantities in the laboratory model were vm = 11.2 m/sec and rm = 

0.04 m. 

We have used the model data to estimate the possible period of the large-scale hurricane 
disturbances responsible for the transfer of energy from the fluctuations to the mean motion. 
The K~rm~n constant calculated according to (4) for the hurricane is ~ = 2.26-10 -3 , and the 

quantity ~rm = 90.4 m. We assume that in the hurricane the normalized scale l* of the dis- 
turbances inducing the second maximum of the curve v(r) is the same as in the model. Then 
the scale of the large-scale fluctuations in the hurricane is 1 = 660 m, and the lifetime is 
T = 35 sec. According to van Mieghem [13], turbulent fluctuations with such periods supply 
atmospheric circulation currents with energy. 

In conclusion we note that the established features of the development of large-scale 
turbulent disturbances are a consequence of the nonlinear character of the processes both in 
physical models of vortices and in their natural atmospheric counterparts. Nonlinear inter- 
action between systems of motion of different scales is what causes the local growth of turbu- 
lent disturbances in certain zones of vortex formations. The indicated average (steady) 
processes are mirrored in the characteristics calculated here. Rigorous estimates require 
more complete information about the systems of motion of all scales. 

NOTATION 

L, momentum scale of turbulence; l, mixing length; v, tangential velocity; ~, K~rm~n 
constant; w, kinematic viscosity coefficient; Vm, first maximum of tangential velocity at 
r = rm; T, period of large-scale disturbances. 
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UNIFORM AND NONUNIFORM FLUIDIZED BED REGIMES 

Yu. I. Chernyaev UDC 532.546 

By analyzing jet flows in a fluidized bed the author has obtained a relation 
defining the boundary between uniform and nonuniform regimes. 

In accordance with the conventional terminology (see, e.g., [1-3]) we shall call a 
fluidized bed regime uniform if the bed can continuously expand upon an increase of velocity 
of the gas or liquid, due to a uniform increase of the gaps between particles of the granular 
material. If, on the other hand, for velocities exceeding the bed start-up velocity, the gas 
or liquid moves through the bed in the form of bubbles, we shall call this regime nonuniform. 

Several approaches have been taken toward an explanation of the differences between these 
regimes, and the most important results have been obtained from the concepts of a model of 
two mutually permeable continua, a two-phase model combined with extremal principles, and a 
model based on analysis of random motions of phases. 

With the two continuous media model, described in detail in [I], one can formally show 
the instability of a uniform fluidized state relative to small perturbations by analyzing a 
linearized system of equations of continuity and motion of the two phases. A considerable 
defect of the model is that the roots obtained for the characteristic equation, which define 
the rate of growth of perturbations, depend on the pressure and the dynamic viscosity of the 
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